
 

 
 
 
 
 
 

Electronic Monitoring: 
Best Practices for 

Automation 
 

BENJAMIN WOODWARD 
MARK HAGER 

HEATHER CRONIN 

 
 
 
  



 

2 
 

Table of Contents 
Introduction ............................................................................................................................................. 2	
System Level Design ................................................................................................................................. 3	

Summary: ............................................................................................................................................. 3	
Program Design: Data Collection ......................................................................................................... 3	
Considerations for Targeted Activities ................................................................................................. 3	

Installation considerations ............................................................................................................... 4	

Hardware Specifications ........................................................................................................................... 7	

Summary .............................................................................................................................................. 7	
Camera Design and Configuration ....................................................................................................... 7	

Algorithm Considerations ........................................................................................................................ 9	

Summary .............................................................................................................................................. 9	
Possible Algorithm Tasks ................................................................................................................... 10	

Object Identification ....................................................................................................................... 11	
Activity Recognition ....................................................................................................................... 14	

Data Collection ................................................................................................................................... 15	

Camera Frame Rate ........................................................................................................................ 15	
Object placement and occlusion .................................................................................................... 16	

Data Annotation ................................................................................................................................. 16	

Box .................................................................................................................................................. 16	
Line ................................................................................................................................................. 16	
Dot .................................................................................................................................................. 16	
Pixel mask ...................................................................................................................................... 17	
Polygon ........................................................................................................................................... 17	

On Vessel Implementations ............................................................................................................... 17	

Conclusion ............................................................................................................................................. 17	

 

Introduction 
This document is a reference for designing an Electronic Monitoring (EM) system suited for 
automated or semi-automated video analysis. It is not meant to be an exhaustive review of EM 
systems, and will focus only on aspects which can make or break automation capabilities. It presents a 
broad range of information for use as a guide to industry groups, governments, or EM vendors 
considering or currently developing automated EM programs.  Finally, it provides technical detail for 
groups which have experience in automated EM programs and an interest in the lessons learned from 
New England. 
 
Automation of visual imagery analysis has progressed at an amazing rate in the last decade. Many 
common tasks can now be fully automated, and automation is even used to enhance human 
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performance of difficult tasks. This document will point out common EM tasks and how machine 
learning has had success or failure automating those tasks. It will also examine the relative benefits of 
automating certain tasks and highlight EM system designs which enable task automation. 
 
The below sections discuss EM system design for physical constraints that drive camera requirements 
and placement, hardware specifications for processing needs, and algorithm considerations for data 
collection goals, annotation workflows, and expected performance. 

System Level Design  

Summary:  
The first step towards understanding the utility of automation in an EM program is to evaluate the 
program objectives and existing monitoring standards for the fishery. Because EM programs differ in 
data collection objectives, time and cost burdens and data standards, automation applications will 
vary across programs. The scope and level of detail captured by footage of tasks intended for 
automation will influence both EM system installation and algorithm performance. Cameras should 
be installed in locations which capture the best compromise between the scope of the activity, the 
necessary level of detail, environmental and structural factors, and camera specifications.  

Program Design: Data Collection  
Across EM programs, data collection varies according to a variety of factors. Program type, fishery, 
fishing method, vessel type, and targeted data categories may all affect how automation incorporates 
into an EM program. Further, the relative effort needed to collect targeted data categories influences 
how automation is applied and which tasks are designated for automation. Because of the high 
variance in automation needs between EM programs, we do not intend to describe all case-by-case 
specifics for program design. Rather, we provide generalizations from a broad range of experiences, 
with a few descriptive examples. 

Considerations for Targeted Activities  
Depending on program objectives, the EM system will target the capture of certain on-board or 
dockside activities. Data collection for all or a subset of those activities may be suited for automation. 
Common activities for which data collection is automated include, but are not limited to: setting of 
gear, hauling of gear, sorting of catch, discarding of catch, catch processing, catch stowing, measuring 
of fish, protected species interactions, and crew-specific behavior. These activities may occur in either 
discreet locations on the vessel or as mobile processes that analyses must track across the vessel or 
fishing area. Some may require detailed imagery for analysis and data collection, while others only 
require an overview image. Therefore, when considering automation during EM system design or 
installation, it is not only important to consider the targeted data categories, but also the manner in 
which targeted activities are conducted and the level of detail necessary to identify each activity. 
Installation of the EM system and areas monitored must be appropriate for the location and scope of 
the targeted activities and data collection categories. 
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Installation considerations 
To implement machine learning across a wide range of activities and conditions, EM system installers 
should make deliberate decisions regarding the camera field of view, camera distance from the object 
or scene, angle of incidence, physical mounting, and environmental conditions surrounding the 
camera. The following paragraphs provide suggestions from our experience of best practices for each 
of these parameters when designing an EM system for automation. 

Field of view 

The camera field of view should be as narrow as possible to see all relevant information about the 
targeted activity. For an activity such as sorting or gear retrieval on board a trawl vessel, this may need 
to be relatively broad, while for gear retrieval on a gillnet vessel, the field of view may be more 
limited. Finally, if the targeted activity includes detection, counting, identification, or measurement of 
fish on a measuring board, a camera with a field of view limited to the only measuring board is ideal.  
 

 
Figure 1: An example of a restricted field of view that captures only the measuring strip and its immediate 
surroundings. This tight view limits the amount of noise an algorithm needs to accommodate in the area 
surrounding the activity of interest. Image provided by the NE groundfish audit project.  

Angle of Incidence 

The best angle for most EM applications is as overhead of the targeted activity as possible. This allows 
for a consistent size and distance of all objects, regardless of their position within the camera field of 
view. On many vessels, this is achieved by mounting cameras in the rigging or A frame for broad deck 
shots. Close shots, such as species ID and length measurements, are best achieved by positioning 
discard control points or measuring strips near vessel structure such as wheelhouse overhangs. This 
creates both a restricted field of view and an overhead shot for detailed imagery analysis. In cases 
where discarding or measuring must occur away from any overhead vessel structure, fabricating a 
structure (e.g. a mounting arm) can create a view which achieves a top-down image. 
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Figure 2: An overhead camera mounting which generates a broad, top-down view of sorting activities. Image 
provided by the NE groundfish audit project. 

 

 
Figure 3: A fabricated mounting which generates a close, top down view of species ID and measuring. Image 
provided by the NE groundfish audit project. 

Camera Distance to target 

Once again, the target and objective of the camera footage must be taken into account when thinking 
about the mounting distance from the target. The combination of the distance from the recorded 
activity, the resolution of the camera sensor, and the field of view provided by the camera’s optics 
dictate the level of detail provided for a specific object or activity of interest. Most modern object 
detection algorithms are sized to work on objects that are between 50 and 450 pixels on a side, if one 
was to draw a square box around the object.  
 
Therefore, the best way to ensure adequate detail for automation is to create tables to calculate the 
expected object size based on the real size of the object, the distance between the object and the 
camera, and the camera sensor and lens parameters (Table 1). Calculations in Table 1 show 
workflows for determining system requirements using the example of a 1-foot length object at a range 
of 25 feet, that must be 100 pixels in size in the captured image. They solve for the required lens focal 
length for a given sensor type or the object size, in pixels, given a specific sensor/lens combination. 
The first is useful in determining the appropriate components for an EM camera setup, while the 
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second is useful to evaluate the appropriateness of a specific EM setup. A useful lens calculator for 
making FoV calculations can be found here: https://www.1stvision.com/lens/fov-lens-calculator. For 
descriptions of object and sensor parameters, see the “Camera Design and Configuration” section on 
page 8. 
 

Object and Sensor Parameters  Computations 

Sensor Pixel Pitch 6.4 µm  Goal Calculation Result 

Sensor Format 1/1.2” 
 Object size on 

sensor 
= 𝑆𝑒𝑛𝑠𝑜𝑟	𝑝𝑖𝑥𝑒𝑙	𝑝𝑖𝑡𝑐ℎ ∗ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑝𝑖𝑥𝑒𝑙𝑠  
= 6.4µm * 100 

0.64mm 

Sensor Horizontal 
Size 10.67 mm 

 Required focal 
length 

= 56789:;	<=>;?@:9
6789:;	A9@B;C

D ∗ 𝑂𝑏𝑗𝑒𝑐𝑡	𝑠𝑖𝑧𝑒	𝑜𝑛	𝑠𝑒𝑛𝑠𝑜𝑟  

= (25 / 1) * 0.64 
16mm 

Sensor Vertical Size 8mm 
 Resulting 

Horizontal FoV 
= 2 ∗ arctan 5 >96@>6O	C6O=P6@;?A	>=P9

Q∗R9ST=O9<	U6:?A	A9@B;C
D  

= 2 * atan(10.67 / (2 * 16)) 
36.9° 

Minimum Desired 
Pixels on Object 100 

 Resulting vertical 
FoV 

= 2 ∗ arctan 5 V9@>6O	W9O;=:?A	>=P9
Q∗R9ST=O9<	U6:?A	A9@B;C

D  
= 2 * atan (8 / (2 * 16)) 

28.1° 

Object Distance 
from Sensor 

25 ft 
 Resulting diagonal 

FoV  = 2 ∗ arctan X√V9@>6O	C6O=P6@;?A	>=P9
Z[V9>@6O	W9O=;:?A	>=P9Z

Q∗R9ST=O9<	U6:?A	A9@B;C
\  

= 2 * atan(√ (10.67^2 + 8^2) / (2 * 16)) 
45.2° 

Object Length 1 ft 
 Object size on 

image 
=
]789:;	>9@>6O	>=P9
V9@>6O	^=_9A	^=;:C

 

=0.64mm/ 0.64µm 

100 
pixels 

Camera + lens focal 
length 

16mm 
 *Note: Computations assume "pinhole" camera model, meaning lens distortion is ignored. 

Reasonable assumption for lenses with ≥12mm focal length. 
 
Table 1: Calculations for determining expected object size, ideal distance between the object and the camera, and 
the camera sensor and lens parameters. Example calculations are for an object 1-foot in length.  

For broad shots intended to perform activity recognition, object detection and/or object tracking, a 
camera mounted 10-30 feet from the target is usually suitable when using 1920 X 1080 resolution. 
For the same resolution we have found that automating the identification of species in the 10-70 cm 
range requires a closer view of 3-15 feet.  

Physical Mounting 

The point at which the camera connects to the vessel is critical. For all automation applications, the 
mounting location should experience minimal vibration. However, during normal vessel operation, 
cameras will experience acute vibration during fishing activity and chronic vibration during steaming. 
Cameras commonly experience acute vibration when mounted near winches or booms and chronic 
vibration when mounted to the vessel superstructure. Mounting to high vibration areas such as these 
is most easily avoided through discussion with the vessel operator. In some cases, it may even be 
prudent to perform mock gear hauling, setting or hoisting to mimic vibration during fishing activity. 
While certain cameras may be robust enough to handle both acute and chronic vibration, other 
models may need a form of vibration absorption. For these, we have found ¼ inch neoprene pads to 
reduce the effects of vibration. For success with automation both types of vibration are important to 
avoid or mitigate. Specifically, for objects identified obtaining a single frame associated with an 
annotation, it is increasingly difficult to obtain such a frame when vibration distorts the imagery. 
 
Another consideration for camera mounting, is minimizing the potential for gear to collide with the 
camera. Cameras are easily struck and moved off target by gear used during fishing and offload. 
Therefore, the best places to mount cameras may be on the back of the wheelhouse, which protects 
cameras from moving gear. If it is essential to mount near moving gear, cameras are most protected by 
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mounting opposite from the moving gear on beams or rigging. A close look at wear and tear on the 
vessel can help to determine locations of frequent gear contact. Taking time to ensure the crew won’t 
bump the cameras when mounting lower to the deck is also important. While it may be obvious that 
reduced physical interactions are useful for regular EM practices, such interactions also create 
incomplete or inconsistent automation training data sets because they change the position of or 
entirely obscure the target activity.  

Environmental Conditions 

It is important to gather and annotate training footage under the same environmental conditions as 
are expected in operational footage. This ensures good generalization performance by algorithms, 
especially for object detection, object tracking, and activity recognition. For example, deck lighting on 
the vessel used to create algorithm training data sets should be like that used by the rest of the fleet. It 
may seem advantageous to use training data from a vessel with the best lighting or to add additional 
lighting to the vessel to improve training data, but building algorithms under ideal conditions can 
ultimately degrade generalization performance. Therefore, when designing EM systems for the 
collection of training data, the characteristics and environmental conditions on the training vessel 
should be representative of the fleet. 
 
Alternatively, algorithms for tasks such as classification of fish within a pre-determined bounding box 
(e.g. the green box in Figure 6), may be trained using data captured under unrepresentative 
conditions. For example, if an algorithm can draw bounding boxes around all fish, but not identify 
species, a second algorithm trained on close-cropped images of fish can identify the sub-images 
created by the bounding box algorithm. These algorithm pairings are much more robust to different 
environmental conditions (e.g. pictures of fish in a lab vs on deck). 
 
The following sections expand on specific camera parameters, and how to evaluate them for your 
application. 

Hardware Specifications   

Summary 
EM systems typically consist of an array of machine vision cameras. The camera configuration will 
determine the automation capacity of footage collected from each camera in the system. Desired 
camera sensitivity, image blur, and field of view are achieved by balancing the camera configurations 
to the optimal level for the captured scene or activity.  

Camera Design and Configuration 
Unlike cameras meant for consumer applications, cameras used in EM are from a class of cameras 
called machine vision cameras. Machine vision cameras lack the components meant for human 
interaction, such as a shutter release or viewfinder, and consist of four main components. 
 

• Lens: a system of optical components that focus light onto the imaging sensor. 
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• Imaging sensor: an array of sensors that convert light into electrical signals. 

• Readout electronics: turn an analog electrical signal into a digital signal, and may apply 
various transformations such as amplification, filtering, or binning. 

• Interface: transfers image data to a computer for recording or processing and accepts 
commands from a software application. 

 
Key requirements that drive design of camera systems include the following: 
 

• Field of view: the angular span corresponding to the image, specified as the diagonal, 
horizontal, and/or vertical field of view. 

• Blur tolerance: the acceptable amount of blur for objects of interest.  For moving objects this 
is dominated by motion blur. 

• Object size: the object of interest’s dimensions in an angular sense. 

• Frame rate: the frequency at which the camera acquires consecutive images. 

• Lighting conditions: the required lighting conditions for proper camera function 
 
The camera’s sensor format and lens determine the field of view. The sensor format refers to the 
physical dimensions of the imaging sensor, which determine aspect ratio. Many machine vision 
cameras have interchangeable lenses which use C-mount or CS-mount as the interface between the 
camera case and the lens. For hardware redundancy, it is possible to use the same image sensor for all 
cameras but achieve different fields of view by using different lenses in each camera. Other cameras 
are designed with the lens and image sensor packaged together. These often have an optical zoom 
capability to change the field of view between cameras or dynamically during monitoring activities. 
However, per the above notes on vibration, optical zoom motors must be sufficiently ruggedized for 
the operating environment. See Table 1 for an example of how field of view affects automation 
capabilities. 
 
Image blur is an especially important consideration when designing an EM system for automation. 
Just as a blurry image can obscure important details for identification by a human, the same is true for 
an algorithm. Therefore, installations should aim to balance the above parameters against tolerance 
for expected motion within an image. 
 
Depending on automation goals, tolerance of blur will differ. For simple activity or motion-based 
actions, a higher level of blur is tolerable because algorithms will use scene context to make decisions. 
For object detection and classification, it is important to drive motion blur close to zero because 
algorithms will use fine-grained details such as morphological structure or coloring pattern to make 
decisions. While simply reducing the amount of time that the camera aperture is open will reduce 
image blur, it can also create images that are overly dark, and do not have the detail required to make 
accurate classification decisions. For many human video review scenarios, these challenges can be 
overcome by tracking the fish through the whole scene and piecing together identifying information 
from different parts of the scene. While this is technically possible for an algorithm, it requires a lot 
more training data and a more complicated architecture. Therefore, the recommendation is to have as 
high quality an image as possible for every frame of interest.  
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The goal of reducing image blur is in direct tension with higher frame rates (high detail) and low light 
scenarios. The reason for this is that to overcome low light and achieve higher detail, the camera 
aperture is left open for as long as possible. Many consumers observe this effect in low light cell 
phone pictures. The following lists the main parameters that increase the ability of a camera system to 
take high quality images with minimal motion blur and highlights recommendations for automation. 
 

• Pixel pitch: the physical size of each pixel on the sensor.  
o Recommended: larger is better. 

• Quantum efficiency: the percentage of incident photons converted to an electrical signal. 
o Recommended: higher is better. 

• Aperture: the size of the smallest window through which light passes in the lens.  
o Recommended: see f-number. 

• F-number: Aperture is often expressed as a ratio of focal length to diameter of the entrance 
pupil called f-number. F-number is favored over simply using aperture diameter/area for 
characterizing lens "brightness" because image illuminance is directly proportional to the 
square of the f-number.  

o Recommended: as a rule of thumb, the lower the f-number, the better the lens for low light 
or high motion scenarios. 

• Exposure: the length of time the sensor accepts light for each image.  
o Recommended: Longer exposure risks more motion blur. Use the lowest possible exposure 

time to get usable imagery. 

• Lens transmissivity: the percentage of incoming light that reaches the image sensor.  
o Recommended: Higher is better. 

 

Algorithm Considerations 

Summary  
Algorithms used for EM generally fall into one of two categories: object identification or activity 
recognition. Object identification is used to recognize an object within a scene and possibly perform 
some task related to that object. Activity recognition is used to identify instances of a particular action 
or activity occurring in the video footage. Activity recognition and object identification algorithms are 
able to build off of each other to perform more complex tasks and further reduce the burden to 
human review, but as the level of automation increases, so does the level of difficulty in creating that 
automation pathway. Below we describe automation pathways and how they might work together for 
a number of common EM tasks including: object identification, fish presence recognition, fish species 
identification, fish counting, feature measurement, and various activity recognition scenarios. 
 
Data collection for these pathways requires careful EM system design and installation as well as 
considerations for building training data sets in human-review workflows. For spatial tasks, video 
reviewers may draw a shape or point on the scene, while for temporal tasks, reviewers may mark a 
series of timestamps. 
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Possible Algorithm Tasks  
Broadly, algorithms for EM fit into two overlapping categories: object identification and activity 
recognition. Algorithms will fall into one or both categories depending on purpose and use, and it is 
important to identify automation objectives when choosing either category. In object identification, 
the goal is to recognize the presence of an object within a scene (e.g. fish species of interest), and then 
localize, identify, or measure that object. An example of this is the Northeast Multispecies Audit 
model EM program. In this model video reviewers count, identify the species, and obtain a length 
measurement of each fish in imagery from cameras placed above measuring boards. 
 

 
Figure 4: A fisherman measures discarded fish, using a measuring strip installed below the EM camera. The fish 
length, and calculated weight is captured during video review using this image. Image provided by the NE 
groundfish audit project. 

The second algorithm category is activity recognition (AR). In this case, the goal is to identify when a 
specific activity is happening within a video scene (e.g discarding of fish, loading or unloading of the 
hold, etc.). An example of this is the Northeast Multispecies Maximized Retention model EM 
program. In this model the goal is to identify when fish are brought on board, when they are 
unloaded, and to identify any discarding of allocated groundfish. Figure 5 shows the outputs of an AR 
algorithm that has characterized the different activities of a fishing trip. The red bars denote start and 
stop times of activities as recorded by a human reviewer. The shaded bars denote recognition of 
specific activities by algorithm. Outputs such as this have the potential to both focus human video 
review efforts and reduce the amount of stored video footage by differentiating between high-priority 
and low-priority video. The algorithm is able to have a granular description of the different activities 
(e.g. Catch Sorting is broken into Sort and Hold Loading), so that even with less than optimal 
performance, someone reviewing this graph can easily pinpoint where to look for certain activities.  
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Object identification and activity recognition algorithms have even greater potential when used in 
tandem to perform a specific task. Figure 6 shows how different automation tasks might build off of 
each other to reduce review time. The difficulty associated with implementing hierarchical algorithms 
increases as the level of automation and task-specificity increases. Algorithm implementation must 
therefore balance the potential reduction in human-review effort and algorithm specificity.  

 
Figure 6: Hierarchy of video analysis. As the automated task becomes more specific, automation difficulty and 
potential reduction in human-review effort increase 

Object Identification 
The task of object identification within a scene is usually associated with image recognition tasks. For 
this reason, most object identification workflows are applied frame by frame, with additional 
algorithms layered on top (e.g. tracking algorithms for counting fish). For these workflows it is 
important to have a training data set that has annotations associated with individual frames. Most 
modern object detection algorithms use Convolutional Neural Networks (CNNs) as their baseline. 
Common implementations for video are YOLO and Faster R-CNN, though there are many others, 
each with their own balance of accuracy, inference speed and processing requirements. 
 

Figure 5: An example of output from activity recognition algorithms. The red bars denote start and stop times of 
activities as recorded by a human reviewer, while the shaded areas denote activity duration as identified by AR 
algorithms. Algorithm outputs: Orange segments represent calculated haul time. Green segments denote net 
handling activity and occur on either side of the haul as the net is set in or hauled out. Gray segments denote when 
catch handling is occurring. Purple segments denote video in which catch is being loaded into the hold.  
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The following paragraphs describe examples of algorithm workflows, proceeding from least 
complicated to most complicated. These are intended to provide examples for designing workflows to 
meet an EM program’s needs. There is almost nothing unique about the example of identifying fish in 
the following, and all of examples provided would be equally valid for just about any EM application, 
regardless of species (even humans, which is where most of the technology comes from). 

Fish Presence Recognition 

One of the simplest workflows is to recognize points in a video in which fish are present within the 
frame. If an algorithm reliably recognizes those points, then a workflow that requires human analysts 
to work with video containing fish may be drastically reduced by allowing a reviewer to jump from 
event to event rather than combing through video to locate fish-handling activities. The algorithm for 
this case does not need to make judgments such as the species of the fish or measure any physical 
property such as length. The training requirements are much more lenient for such a workflow, and 
the performance and reliability of the resulting models are generally very high. 
 
With a slight modification this workflow can accomplish fish presence recognition within a Region of 
Interest (ROI) of an image. Usually the ROI is some subset of the image such as a measuring board or 
conveyor belt. In some cases, fish presences recognition can even be accomplished without the aid of 
an additional algorithm. There are many software tools available to interact with images in this way 
(e.g. OpenCV, Python Imaging Library), and integrating them into review software is not a difficult 
task. Figure 7 shows an example of a fish recognition (green box) performed inside a defined ROI 
(blue box). The ROI reduces both processing load, as well as the potential for false alarms. In this 
example, the algorithm is implemented as part of the open source OpenEM algorithm and software 
library. 

 

Fish Species Identification 

A step up from the previous workflow would be to identify the species of a fish within a frame. This 
usually requires some concept of localization within a scene because in many use cases there are 

Figure 7: Image with a defined Region of Interest (ROI) in blue, as well as a localized fish in green. By restricting an 
algorithm’s field of view to a specific ROI, performance is improved by excluding potential confusing scenery (e.g. 
background, totes with other fish in them, etc.). Image provided by the NE groundfish audit project. 
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multiple fish of multiple species types within a scene. Performing localization requires the use of more 
complex algorithms which need increased amounts of training data that is harder to generate. 
 
To build training data sets, human reviewers localize objects within a scene by describing the 
bounding coordinates for the object. Typically, coordinates are represented as a box, but any 
polygonal shape or even a pixel mask can be used. This information is used to train a localization 
algorithm to judge itself when it creates bounding box proposals. By giving it examples of 
localizations (boxes), it learns to draw the appropriate boxes in new images it is not trained on. For 
imagery, there are many free tools available to generate these types of localizations. A few of them are 
Tator (https://github.com/cvisionai/Tator), CVAT (https://github.com/opencv/cvat), LabelMe 
(https://github.com/wkentaro/labelme), and many others. In the above example, (Figure 7) the green 
box shows an example of a fish localized within an image. 

Fish Counting 

Fish counting is an example of a task in which information needs to be propagated from frame to 
frame to determine something about the video. Typically, tracking is incorporated to recognize the 
same fish from frame to frame and when it enters and exits the footage. Tracking requires a concept of 
localization as in the fish species recognition but it does not require a full species identification 
algorithm. For cases with one or a few fish with little to no overlapping or long-term occlusion, there 
are many tracking algorithm options. Cases with more than a handful of fish and high potential for 
occlusion (e.g. on a conveyor belt) are significantly more difficult. This is known as the multi-object 
tracking problem, and it is not a well solved problem in most domains. The training data required for 
multi-object tracking is vastly harder to generate by hand. Most efforts in generating multi-object 
tracking algorithms are a combination of automation assistance to generate training data as well as 
model-based tracking algorithms to reduce the amount of required data. With the resources and the 
patience though, the benefits of generating high quality tracking training data are immense.  

Feature measurement 

Oftentimes there is a desire to not just count and identify, but to also generate a feature measurement 
(e.g. length) for objects of interest. Depending on the feature and the scene, this task has varying 
degrees of difficulty. For example, fish that are on a fixed measuring board with a fixed-distance 
camera view are straightforward to measure accurately. In this instance the algorithm only needs to 
measure the pixel distance, which is usually well approximated by the bounding box generated by the 
object detection algorithm around the fish (see Figure 7). That pixel distance is then converted to 
length units using a fixed conversion factor.  
 
It is significantly more difficult to generate a feature measurement in scenes that do not have a fixed 
distance or canonical view of the fish (e.g. when fish are hauled over the side of a boat). In this case it 
is usually required to have a stereo camera set up, which needs much more complex algorithms and 
training data. An example of work being done for stereo measurement is in the Alaska Fisheries 
Science Center, in conjunction with the University of Washington 
(https://www.fisheries.noaa.gov/feature-story/advancing-innovative-technologies-modernize-fishery-
monitoring).  
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Activity Recognition 
Activity recognition in video is most often associated with labeling of short video clips (YouTube-8M, 
Thumos, etc.), but for use in longer, unconstrained video clips, it is usually known as event detection. 
This is still a very active area of research, and there are not common frameworks to fall back on for 
this task.  
 
The good news for EM is that the required bounds for event recognition are often much looser than in 
other domains. For instance, if an algorithm can narrow down to +/- 1 minute for activities of interest, 
this is usually sufficient for EM purposes. This is especially true if a human will be using those time 
stamps to jump to parts of video and manually verify events of interest. This level of temporal 
accuracy is also likely acceptable for use in CPUE or other fishery metric calculations. 
 
Typically, activity recognition algorithms also have less burdensome annotation requirements for 
building training data sets because they only requiring start and stop timestamps for events of interest, 
instead of annotations such as bounding boxes, lines, or other shapes. These are often already 
recorded in review software and require little modification of review technique to generate 
appropriate training data for algorithms. 
 
The following paragraphs describe a few common workflows for activity recognition. 
 

Fishing Activity 

In this use case the goal is to identify portions of video that contain fishing activity of interest. The 
intended output would be a timestamp, duration, and label. For most activities of interest (e.g. setting 
or hauling of gear or catch handling) the accuracy can be close to 100%, with relatively tight time 
bounds. In the case of a 24/7 camera system, this can eliminate close to 99% of the captured video as 
not relevant, resulting in significant storage and transmission savings, as well as review time savings. 
When targeting this level of automation, it is best to have clear camera views of all areas where 
targeted activities can occur. The best views tend to be overhead, with resolution on the order of 720p 
or better, given the typically available mounting points are higher up on the boat. This is a rule of 
thumb and depending on available mount points and required fields of view, can be higher or lower 
(see "Hardware Specifications", page 7). 

Hold Loading/Unloading 

For non-fishing activity such as hold loading or unloading, activity recognition starts to cross over 
into object detection or have otherwise more difficult aspects. For instance, EM protocols may aim to 
determine when a hold is loaded, count the number of totes loaded, and identify the species 
associated with each tote. This is a compound activity that comprises the recognition of the loading 
event, and then counting of totes and species identification. The loading event can be bounded with 
simple time stamps but counting of totes and species identification additionally require object 
detection and tracking.  
 
Typically, this type of activity recognition needs an unobstructed camera view of the area that 
contains all objects of interest and their intended destination. Again, this is best achieved through an 
overhead camera view. For adequate views of individual totes and individual fish within totes, a 
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higher resolution such as 1080p is often required, due to available overhead mounting positions. This 
is due to the algorithmic specification of an object subtending at least 50 pixels of the field of view.  
 
The data annotations needed to achieve all three of these goals are a little more involved than the time 
stamp only requirements for fishing activity and are similar in effort to object detection annotation. 

Anomalous Activity 

Oftentimes it is desired to flag anomalous events such as a protected species interaction, prohibited 
discarding, crew in a dangerous position, or other activity that is of special interest to managers or 
captains. The diversity of possible events in this regime means that detecting these events is usually a 
noisy problem, with a fair number of false positives. It is possible to construct high performance 
algorithms with low false positive rates and high recall, but they tend to require more training data 
than is typically available and cost more to develop than is justified by what they are detecting. 
 
With the above considerations in mind, a useful paradigm for anomalous activity identification is to 
identify a region of interest (ROI) where these activities are likely to occur and to focus processing on 
that area. The requirements are then an unobstructed view of the area, with an overhead view 
typically desired. In the case of identifying activities such as operations in a dangerous or restricted 
area, lower resolutions such as 720p can usually be accommodated. However, for the use case of 
identifying illegal discards or protected species interactions, there is an element of object detection 
and identification that necessitates a higher resolution. Discriminating between allowable and 
prohibited discards is usually an easier proposition for an algorithm than full species identification. 
Protected species interactions are easier still but usually suffer from a lack of training data. 

Data Collection  
For all the use cases described in the previous section, there are some important differences between 
systems designed for human-only video review instead of algorithm-assisted video review. This 
section will highlight some of the footage requirements from automated use cases, as well as give 
examples of considerations that may not seem obvious when designing for human analysis rather than 
algorithm analysis. In addition to requirements on the EM system for operational functionality, there 
are also requirements on the data collected to train algorithms to ensure they are robust and perform 
as expected in application. The following is a list of guidelines for getting the best EM footage for 
automation 

Camera Frame Rate 
Generally, human reviewers are adept at inferring information between frames of video and can make 
more robust judgements than algorithms regarding an object of interest by using multiple partial 
views. This allows human reviewers to accommodate slightly lower frame rates than automated 
analysis.  
 
Camera frame rate is primarily important when the objects of interest are only in the field of view for 
a short amount of time. For quick moving operations such as a conveyor or a discard measuring 
operation, we therefore recommend 15 frames per second as a minimum frame rate to guarantee a 
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good view of the object. For activity recognition, where judgments are made closer to the minute time 
scale, it is often enough to capture 5 fps, or sometimes even 1 fps footage.  
 

Object placement and occlusion 
Humans are also particularly adept at tracking objects through occlusions (e.g. hand covering) and 
using context from separate views to piece together classification clues. For instance, a human 
reviewer may be able to easily identify a fish that is mostly occluded by a hand when being measured 
by looking back a few seconds in time to find a better view. Algorithms do best when they are 
afforded a single, clear view at a known point in space or time. This minimizes the need for complex 
tracking algorithms, or algorithms that consider every frame in which they see a particular fish. While 
these types of algorithms are sometimes necessary, a significant amount of development time, and 
time spent generating training data can be saved if you can provide that “money shot” view. 
Occlusions are best avoided through training of vessel crew and a thorough discussion of deck 
operations during system installation. 

Data Annotation 
As has been discussed in previous sections, the primary method of training algorithms is a technique 
known as supervised learning. This is accomplished by showing the algorithm many positive and 
negative examples for the concept that it is learning. Algorithms will use various types of reviewer-
generated annotations as the cues to understand what is meant by these examples. For spatial tasks, 
such as species detection and recognition, annotations may be drawn on the scene. For temporal 
tasks, the most common annotation is either a single time stamp along with a label, or a start and stop 
time, also with a label. The following is a list of spatial annotation types, and where to use them. 

Box  
This is the most common annotation to use in visual analysis tasks. Box annotations describe the 
coordinates in a scene that create a rectangle that encompasses the object of interest. For instance, a 
rectangle may be described by the x and y coordinates of its four corners, or by the x and y 
coordinates of one of the corners and a width and height. It does not matter which convention is used 
so long as the same convention is always used, and the algorithm is provided a description of the 
convention. 

Line  
Line annotations are most often used to measure an object’s length. Usually, they are used in 
conjunction with box annotations. The best way to describe a line is the x and y coordinates of its 
endpoints.  

Dot  
The dot annotation most commonly used to denote an area of interest or to count objects within a 
scene. It is usually used with more complex algorithms that attempt to infer something about the 
location marked by the dot by looking at the whole scene. 
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Pixel mask 
Pixel masks are a tool used to generate segmentation masks, which seek to identify all pixels 
belonging to an object in a scene. With a complete representation of an object, algorithms can try to 
learn things such as morphometrics or pose of an object. Pixel masks are typically represented as a list 
of pixel indices within an image, where a defined convention determines how to assign numbers to 
pixels within the image.  

Polygon 
Polygons may be used in place of pixel masks, as a lower fidelity form, to accomplish the same types 
of tasks. It is far easier to draw a polygon than it is to color in every pixel belonging to an object. 
Polygons are usually represented as ordered lists of the x and y coordinates of vertices. 

On Vessel Implementations 
Automation algorithms may not only have different goals for video analysis but may also have 
different modes of operation. One extremely useful use case is running algorithms on the vessel on 
which the video footage is captured. This can drastically reduce both the storage and transmission 
requirements for EM video data. However, the available compute capability on board a vessel is 
usually significantly less than what is available at a data review center, and so there are considerations 
for expected performance and reasonable use cases.  
 
The main considerations for on board vessel algorithm evaluation revolve around Size, Weight, and 
Power - and Cost (SWAP-C). It is technically possible to put a powerful enough computer on board a 
vessel to run the types of algorithms discussed in this document, but those computers can range in 
cost up to several thousands of dollars. Additionally, without optimization, many of the algorithms 
developed do not run in (near) real time.  
 
There does exist a growing field of low cost, lightweight, ruggedized computers for machine learning 
inferencing (e.g. NVIDIA’s Jetson platform). These systems are sufficient for running the following 
types of workloads: 
 

• Object detection and classification 

• Activity Recognition 
 
These two workflows comprise a large majority of the types of automation that are most useful aboard 
a vessel, because they can act as trigger points for either prioritizing recordings, or human 
intervention, via lightweight message outputs. It is much simpler to consider sending a small text file 
with a summary of the last minute’s worth of activity or discards over satellite or some other cellular 
link than it is to send an entire minute’s worth of multi-camera video frames.  

Conclusion 
In Electronic Monitoring programs, automation is increasingly used to create efficiencies for common 
EM tasks. Data collection for these tasks requires careful EM system design and installation as well as 
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considerations for building training data sets in human-review workflows. Because EM programs 
differ in data-collection objectives, time and cost burdens and data standards, automation applications 
will vary across programs. Automation algorithms may not only have different goals for video analysis 
but may also have different modes of operation.  
 
Whether looking to incorporate automation from the outset or building a program that may use 
automation down the line, considerations for machine learning should be incorporated into program 
and EM-system design on the front end. These considerations include camera configuration, 
installation limitations, scope and level of detail captured by footage, processing needs, data collection 
goals, annotation workflows, and the required level of performance. Cameras should be installed in 
locations which capture the best compromise between the scope of the activity, the necessary level of 
detail, environmental and structural factors, and camera specifications.  
 
Algorithms used for EM generally fall into one of two categories: object identification or activity 
recognition. Object identification is used to recognize an object within a scene and perform some task 
related to that object. Activity recognition is used to identify instances of a particular action or activity 
occurring in the video footage. Activity recognition and object identification algorithms can build off 
of each other to perform more complex tasks and further reduce the burden to human review, but as 
the level of automation increases, so does the level of difficulty in creating that automation pathway. 
While object identification and activity recognition algorithms have even greater potential when used 
in tandem, algorithm implementation must balance the potential future reduction in cost or time with 
the human-review effort required to generate algorithm specificity. 
 
The primary method of training algorithms is a technique known as supervised learning in which the 
algorithm is trained by showing many positive and negative examples for the concept that it is 
learning. Therefore, there are some important differences between systems designed for human-only 
video review instead of algorithm-assisted video review. Human-review workflows should be created 
in a way that easily generate the appropriate training data for algorithms and provide enough training 
data to ensure algorithms are robust and perform as expected in application. Operating these AI 
training workflows may require more budget and should be planned for on the outset of a project if 
automation is a known goal.  
 
In conclusion, automation has the potential to drastically improve EM program efficiencies and 
therefore their effectiveness. Careful thought and proper planning are essential to making the most of 
the powerful technology available. This document is a compilation of best practices and lessons 
learned from the authors experiences implementing automation in their respective EM programs. We 
hope this can serve as a guide to help current and future EM practitioners make decisions that allow 
for successful automation in their program. 
 
 
 


